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A new algorithm for dynamic load-balancing on multi-processor systems and its application 
to the molecular dynamics simulation of the spinodal phase separation are presented. The 
load-balancer is distributed among the processors and embedded in the application itself. 
Tests performed on a transputer network show that the load-balancer behaves almost ideally 
in this application. The same approach can be easily extended to different multi-processor 
topologies or applications. (0 1991 Academic Press, Inc. 

1. INTRODUCTION 

The balancing of the workload among the processors of a parallel computer 
system is central to achieve high performance. The load-balancing problem 
presents, in general, two aspects which have to be taken into account: 

l The underlying architecture of the system used. This includes the topology 
of the multi-processor system and the possibilities of the processor interconnections. 
In the simplest case there is a predefined fixed and usually homogeneous topology, 
e.g., a hypercube scheme [l]. More flexible systems allow for a dynamic or static 
reconfiguration of the interprocessor connections [2]. Clearly the load-balancing 
problem is easier to solve if the topology is fixed and homogeneous during 
computation [ 3 1. 
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l The application to be run on the target system. The load-balacing problem 
is relatively easy to solve in the case of a homogeneous computational problem 
where each member of the underlying data domain is associated with a similar 
complexity in time (i.e., calculation time) and where the member distribution in 
the domain does not change during the computation (i.e., a static data distribution). 
This is the case, e.g., for spin lattice simulations [4] and equilibrium simulation 
of mobile objects [S, 6, IO]. For problems where either the data distribution or 
the member time complexity or both change during the computation, more 
complex methods have to be devised to dynamically reallocate the workload of the 
processors in order to achieve a well-balanced overall load of the system and thus 
a high efficiency [3]. 

In this paper we describe a new algorithm for dynamic load-balancing and its 
application to the molecular dynamics (MD) simulation of the spinodal phase 
separation of a two-dimensional fluid. The load-balancer is distributed among the 
processors and embedded in the application itself. The target system is a transputer 
network [7] organized as a ring; i.e., the topology is fixed and homogeneous. Thus 
the description and investigations of the algorithm will focus on the embedding and 
behavior of the algorithm in the chosen application of MD simulations. However, 
this approach is not limited to a particular multi-processor topology or application 
[S, 31. Following the same approach a simpler algorithm has already been 
implemented which can be slower in critical conditions [9]. 

2. MOLECULAR DYNAMICS SIMULATION ON A MULTI-PROCESSOR SYSTEM 

The molecular dynamics simulation of the spinodal phase separation of a 
two-dimensional fluid involves systems where the range of correlations is many 
times the range of the potential, and very large numbers of particles (tens or hun- 
dreds of thousands) are required [6]. This kind of simulation can be handled on 
MIMD computers, by decomposing the simulation box into equal-area rectangular 
domains, and assigning one of them to each processor, thereby avoiding the need 
to consider widely-separated particle pairs [4, 111. Such a domain structure for 
eight processors is shown in Fig. IA, where a typicai initial configuration of a 
system consisting of 4050 Lennard-Jones particles [ 12) is reported. The horizontal 
strips represent domains attributed to different processors. In what follows we shall 
indicate as population of a processor the number of particles belonging to its 
domain. In the exploded inset of Fig. 1, details of the boundary regions between 
two adjacent domains are shown. They are delimited by dashed lines one cutoff 
length apart from the domain boundary (solid line). Within these regions, particles 
belonging to a given processor interact with particles attributed to the neighboring 
processor. Therefore, the coordinates of these particles have to be exchanged 
between neighboring processors at each integration step. To make this communica- 
tion efficient a ring topology is usually chosen for the inter-processor connections. 
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FIG. 1. (A) Typical initial configuration for the molecular dynamics simulation of a two-dimensional 
system involving 4050 Lennard-Jones particles, which undergoes a spinodal phase separation. The 
simulation box is subdivided into eight rectangular domains which are attributed to the eight ring-con- 
nected transputers constituting a MIMD computer. (B) Exploded view of the boundary region between 
two adjacent domains. (C) Final configuration reached after 100,000 integration steps (equivalent to a 
simulated time of 1 ns) keeping constant the domain limits. (D) The same tinal configuration as in (C) 
obtained while the load-balancer is active, which causes a different domain sizing in order to optimize 
the processor workload. 

As the simulation proceeds, the system undergoes the spinodal separation 
developing a cluster structure, which could result in a performance impact, if the 
initial equal-area decomposition is maintained (Fig. 1C). Indeed, processors which 
happen to be responsible for domains containing few particles have only little to do; 
they update their particle coordinates and have to wait until the neighboring 
processors are ready to communicate. Therefore, to keep the overall performance of 
the parallel computer as high as possible throughout the whole simulation, we are 
faced with the problem of dynamically reallocating particles among processors. 

3. DYNAMIC LOAD BALANCING IN AN APPLICATION 

To achieve the best possible overall performance of a parallel system during the 
entire duration of the application a load-balancer process is usually run con- 
currently with the main application [ 131. This feature is generally assumed as 
essential for the design of a dynamic load-balancer [ 141, which then can be 
implemented according to many different schemes [ 131. Among these, the method 
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of stimulated annealing [ 151 can be used to search for the optimal load-balancing 
for “irregular” problems such as the simulation of phase transitions, assuming as 
the objective energy function to be minimized, the maximum workload per 
processor. However, since the annealing procedure steals computational time away 
from the principal computational task of interest, a difficult compromise has to be 
reached between the following requirements: the annealing procedure should be 
rapid enough to closely track the computation, which, on the other hand, should 
not be unreasonably slowed down by the procedure itself. 

Common to these load-balancing methods is the global control of the processors’ 
workload. The decision to rearrange the domains, i.e., to move particles from one 
processor to its neighbors in such a way that they will have about the same number 
of particles, is made by a central control process. This means that a dynamic load- 
balancer based on common optimization techniques, like simulated annealing, is 
driven by the minimization of a global function. This can strongly influence the 
efficiency of an application run on a distributed system, because the control process 
needs to know enough information about all the processors in order to make a 
balancing decision and it must advise the processor whether or not to exchange 
particles, i.e., to change their domain. These approaches thus imply a certain con- 
tradiction: the application is distributed over a multi-processor network without 
any global control, but the load-balancing requirements introduce a new globality 
again. In other words, the global control mechanism is contradictory to the ideas 
of parallel MIMD systems and algorithms. 

These considerations prompted us to devise a new approach to load-balancing, 
where the load-balancer is distributed among the processors and where it is embedded 
within the application itself. According to this method, every processor along its 
normal computational cycle decides whether to give particles to its neighbors 
moving its upper and/or lower strip limits so as to maintain the population nearly 
equal to those of this neighbors. This decision is taken by each processor locally. 
As far as the load-balancer is concerned, each processor knows only the population 
of its immediate neighbors and its own. The domain of a processor is thereafter 
changed in order to reach a local equilibrium. In each computational cycle of the 
application all processors try in parallel to reach a local balance of the workload 
with respect to their neighbors. After a reasonable number of cycles, which in the 
worst case is quadratic to the number of processors, a global equilibrium, and thus 
a globally balanced situation, with populations of a similar size will be reached. 

This approach has an analogy in physics: Imagine as a limiting case all particles 
assigned to one processor in the pipeline’ and all the other processors having no 
population. Particles will dissipate by means of the load-balancer throughout the 
pipeline in a way that closely resembles the diffusion of heat in a bar without heat 
exchange with the environment. In fact it is possible to give a formal description of 

‘The distributed MD simulation algorithm is based on a ring topology to satisfy boundary condi- 
tions. However, for the load-balancing algorithm only a pipeline out of the ring is relevant (refer to 
Fig. 2). 
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FIG. 2. Transputer network consisting of one I/O processor and eight worker processors. For the 
load-balancer only the pipeline of the workers is relevant, whereas for the MD simulation the workers’ 
ring is used. 

the proposed algorithm in terms of a discrete Poisson equation [S]. The numerical 
solution of a discrete Poisson equation indeed leads to the same iteration scheme 
as that for the proposed load-balancer. 

The distributed load-balancing algorithm is designed such that, on each 
processor of the system, one and the same balancing procedure runs in parallel 
embedded in the application itself. Figure 3 shows the structure of the load-balancer 
algorithm in pseudo-code (Occam-like [ 161). The diffusion of the load or the num- 
ber of particles to be moved from one processor to another processor is controlled 
by the load differences between a processor and its neighbors and, additionally, by 
a weighing factor. 

4. LOAD-BALANCED MOLECULAR DYNAMICS SIMULATION ALGORITHM 

To understand how the dynamic load-balancer has been embedded in the MD 
algorithm it is worth noting that in any geometric parallel decomposition of local 
dynamics problems there is one main synchronization event among processors at 

PROC load.balancer() 
SW 

. . . initialize 
SEQ i = 0 FOR cycles 

SE9 
. . . application 
. . . exchange load information with neighbors 
VAL old.population IS my.population : 
SEQ k = 0 FOR neighbors 

VAL to.move IS (old.population - neighbor. populat ion [k] )/weight : 
IF 

to.move > threshold 
SE’4 

my. populat ion := my.population - to.move 
move.population[k] := to.move 

TRUE 
move.population := 0 

. . . exchange move.population with neighbors 

FIG. 3. Distributed load-balancer. 
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each integration step, i.e., tne exchange of boundary and incominggoutgoing 
particles. 

Each processor determines whether a particle has left its domain or is still 
remaining in it by checking its position with respect to the limits of its region just 
before exchanging particles. So, if the load-balancer wants to move particles from 
one processor to another it has to move the boundary limit between them before 
particles are recognized as internal or external to a processor domain and 
exchanged. The actuation part of the load balancer algorithm, i.e., the part in which 
the limits are actually moved must then precede the particle exchange procedure of 
the MD algorithm. On the other hand, if the load-balancer has to closely track the 
computation it has to work with up-to-date populations, i.e., with populations just 
computed after the particle exchange. 

These considerations explain why the load-balancer code has been split into two 
parts whose relative position with respect to the main procedures of the iterative 
part of the concurrent MD program is shown in Fig. 4. Lines (folds) with 
comments in capital letter contain the actuation (CHANGE BOUNDARY LIMITS) 
and the decision part (COMPUTE NEW BOUNDARY LIMITS), respectively, of the 
load-balancer algorithm. 

Acting in this way, the redistribution of particle coordinates among processors, 
required by the load-balancer, does not imply any further communication imposed 
synchronization event, varying solely the quantity of data normally transmitted in 
the particle exchange routine of the MD program. 

To obtain the desired particle redistribution the load-balancer obviously cannot 
actually change particle positions but moves boundary limits between processors. 
Once the load-balancer has stated the amount of particles a processor has to send 
to its neighbor, it starts to diminish the processor’s domain by trying to put back- 
ward the limit by a predefined small quantity (de1 ta in Fig. 5) and checks at each 
trial how many particles would result outgone. As soon as the number of outgoing 
particles equals or exceeds the desired amount it stops and communicates the new 
limit to the involved neighbor. There is only one constraint the load-balancer has 
to take into account: the domains cannot become too small with respect to the 
boundary regions. 

WHILE cycling 
SW 

. . . calculate particle interactions 

. . . update particle positions 

. , . CHABCE BOUHDARY LIHITS 

. I . exchange boundary and incoming - outgoing 
particles with neighboring processors 

. . . adjust coordinate matrix to 
maintain the data structure 

. . . COHPUTE IEY BOUBDARY LIMITS 

FIG. 4. MD simulation with integrated load-balancer. 
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SW 
. . . exchange populations with neighbors 

to.move.doun = (my.population - doanstream.neighbor.population) / weight 
to.move.up = (my.population - upperstream.neighbor.population) / weight 

-- compare with upperstream neighbor 
INT outgoing.particles: 
BOOL try.again: 
IF 

to.move.up > threshold 

-- put backwards upper limit in steps of size ‘delta’ 
SW 

try.again := TRUE 
WHILE try. again 

SE’4 
temporary.upper.limit := temporary.upper.limit - delta 
. . . count outgoing particles 
. . . test if the domain is becoming too small 
IF 

(outgoing.particles >= particles.to.give) OR domain.too.small 
try.again := FALSE 

TRUE 
SKIP 

TRUE 
SKIP 

. . . compare with downstream neighbor 

FIG. 5. Load-balancer in the MD simulation. 

5. FORMAL DESCRIPTION OF THE LOAD-BALANCER 

Formally, the multi-processor system used for the MD simulation, the pipeline, 
can be represented by an ordered set T= { 1, 2, . . . . n} of processors. Let Q be the set 
of the particles to be distributed among the processors and let Z(i, t) be the particle 
population of the processor i at iteration step t. Since the MD simulation involves 
many particles, l(i, t) may be considered as a real number in [0, l] (the total 
population will be normalized to 1, i.e., CT= I I(i, t) = 1 Vt). At each iteration step,* 
every processor will try to maintain its population nearly equal to those of its 

2 Because the load-balancer is embedded in the application, the iteration step t of the MD simulation 
and that of the load-balancing algorithm are identical. 
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neighbors. This can be achieved by exchanging l/m, (m > 2) of the population 
difference with each immediate neighbor (m corresponds to the weight in the 
algorithm of Fig. 3) i.e., 

46 t) - .G, f) 
m 

(j=i+ 1 or j=i- 1). 

This results in the following iteration scheme 

I(i, t+ l)=Z(i, t)- 
l(i, t)-l(i- 1, t) I(i,t)-Qi+ 1, 1) 

m m 

l(i- l,t)(m-2) I(i, t)+I(i+ l), t) = if l<i<n 
m 

1(1, t+ l)=f(l, t)- 41, l) - 42, f) 
m 

(m- l)f(l, t)+1(2, t) = 
m 

I($ t + 1) = I(& t) - 
l(n, t) - I(n - 1, t) 

m 

(m - 1) l(n, t) + f(n - 1, t) = 
m 

The last two iteration equations are sufficient to keep the total amount of particles 
constant, i.e., 

i l(i,t)= i f(i,O) Vt>O. 
i=l i=l 

Let 15(t) be the vector (I( 1, t), 42, t), . . . . l(n, t))=. Then each iteration step can be 
represented by the linear system 

where 

PA 
m 

L(t + 1) = PL(t) tao, 

n-l 1 
1 m-2 1 

1 m-2 1 

1 m-2 1 
1 m-2 1 

0 1 m-l 
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THEOREM 1. Let L(0) be an initial distribution of particles, such that 
x1= I l(i, 0) = 1, then if m Z 2 

lim L(t)=i(l, l,..., l)T; 
,-CC 

i.e., the iteration scheme converges towards the uniform distribution. 

Proof Note that L(t) = P’L(0). According to [ 171, the eigenvalues of P are 

~ 
k 

=(m-2)+2cos((k- l)rc/n) 
> k = 1, 2, . . . . n, 

m 

and the characteristic vector vCk) associated with 1, has the following coordinates: 

(k-1)x 
vjk’= coS(2i- 1) 2n, 

Let uCk) denote the normalized eigenvector t~(~)/llv(~)ll associated with uCk). Since 
P is a symmetric matrix and all eigenvalues are different, the eigenvectors are 
orthogonal and it is easy to represent the initial particle distribution as a linear 
combination of the normalized eigenvectors: 

L(0) = i (L(O), U(k)) U(k). 
k=l 

Let ak= (L(O), ~6~)). Since u(l)= (l/&)(1, 1, . . . . l)T, c1r = l/J;;. Now note that 
A, = 1 and that 11,1 < 1 if k > 1 and m > 2. Since 

then 

P’L(O)= i aiA~u”‘, 
i=l 

lim P’L(0) = a1 u(l); 
t-Z.2 

i.e., 

lim P’L(0) = k (1, 1, . . . . l)T. 1 
,-CC 

THEOREM 2. The time complexity of the load-balancing algorithm is 

O(n’). 

Proof: The convergence speed of the iteration scheme depends in the worst case 
on the second greatest modulus I of the eigenvalues of P, i.e., on 

(m - 2) + 2 cos(rr/n) 
m 
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Let E < 1 be a suitable positive constant and let t be a positive integer, such that 
A’ < E. Note that for large n, i.e., for large networks, 

]Jm-2)+2cos(7d~)~ * 72 
m mn2 

Since 

t = In .s/ln %, 

it follows that 

Since 

In 1-L EL 
( > n2 n2’ 

the complexity of the load-balancing algorithm is O(n’). 1 

6. IMPLEMENTATION AND RESULTS 

The computer system on which the load-balancer has been implemented and 
tested is made up by eight 20-MHz T800 transputers (designated by W in Fig. 2) 
with 256 Kbyte RAM each, connected as a ring, plus a 20-MHz T800 transputer 
(designated by I/O in Fig. 2) with 2 Mbyte RAM which, being interfaced to the 
host IBM PC/AT, provides I/O capabilities to the transputer network. 

The physical system chosen as test case for evaluating the performance of the 
load balancer consists of 4050 particles interacting by the Lennard-Jones 12-6 
potential (a = 3.405A and E = 0.23804 Kcal/mole) which are enclosed in a square 
box of 381.36R side length. The standard periodic boundary conditions are imposed 
and a potential cutoff of 9.56A is assumed. A triangular lattice and a maxwellian 
velocity distribution corresponding to a temperature of 50.3 K are chosen as initial 
conditions. The temperature value is kept constant during the simulation by 
resealing the particle velocities at each integration step. 

The dynamics of the phase separation process has been followed to very late 
times (1 ns) and the effectiveness of our approach to load-balancing is evident from 
Fig. 6, where the execution time per MD step is reported with (continuous line) and 
without ( + symbols) the load balancer. As one can note the execution time per step 
increases somewhat even when the load-balancer is active. This is due to the 
increasing number of in-range interactions the processors have to evaluate as the 
particle condensation goes on. As Fig. 7 clearly shows the load-balancer has been 
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FIG. 6. Execution time per MD step vs. step number with (continuous line) and without (crosses) 
load-balancer. 

able along the whole simulation to keep the maximum population over processors 
very near the ideal ratio of the particles to the number of processors (506 in our 
case). In this run a weight factor of 4 was selected and a weighted particle 
difference of 2 has been chosen as the triggering threshold for the load-balancer 
intervention (threshold in Fig. 3 and Fig. 5). 

mm 
750 

wo 
10 20 30 40 50 60 70 80 90 II 

step (Thousands) 

3 

FIG. 7. Maximum population over processors vs. MD step number with (continuous line) and 
without (crosses) load-balancer. 
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500 
3 

FIG. 8. Maximum population over processors vs. MD step number after the activation of the load- 
balancer (continuous line) starting from the domain distribution shown in Fig. 1C to reach the equi- 
librium population distribution of Fig. 1D. Crosses refer to the performance of a simpler load-balancing 
algorithm. 

To give a show of the load-balancer abilities when applied to situations of large 
unbalance, two tests have been performed. In the first one, the load-balancer starts 
from the equal area decomposition shown in Fig. 1C and as one can see from Fig. 8 
(continuous line) population equilibrium is attained within a few tens of steps. As 
a comparison, in the same figure the performance of a simpler load-balancing algo- 
rithm [9] is reported (crosses) when applied to the same initial situation. The 
second test starts from the same domain decomposition of the preceding one but 

A B 

FIG. 9. Further example of the effectiveness of the presently described load-balancer which takes 
only 40 steps to reach the domain distribution shown on the right starting from the distribution depicted 
on the left. The number of particles placed at the center of the simulation box is 1024. 
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with 1024 particles concentrated at the center of the simulation box. A few tens of 
steps are needed by the load-balancer to pass from the unbalanced distribution of 
Fig. 9A to the balanced one shown in Fig. 9B. 

7. CONCLUSION 

In conclusion, the above described approach to the load-balancing problem of 
multi-processor systems features remarkable advantages as compared with more 
traditional methods. Indeed, the present load-balancer 

. removes the need of making the difficult choice of how long and how 
frequently the load-balancer has to intervene, stealing away processors and com- 
putational cycles from the MD simulation 

. automatically tracks closely to the computation, because it acts at each 
computational step 

l does not require practically any additional communication imposed 
synchronization among processors, because the necessary information exchange for 
the load-balancer is completely embedded in the application and 

l the parallel decomposition can be retained with this load-balancer also at 
the algorithmical level, since it acts locally with the same grain of parallelism as the 
MD simulation and does not need any global intervention. 

A further important characteristic of this load-balancer is its rapidity in reaching 
equilibrium even when the initial configuration is very unbalanced. The implemen- 
tation of the load-balancer has shown that the algorithm in most cases converges 
much faster than the worst case that complexity analysis has yielded. The presented 
load-balancing algorithm shows that a global characteristic, the load equilibrium, 
can be reached very efficiently by completely local information exchanges and 
calculations. Moreover, the proposed load-balancing technique can be applied to 
any application which can be decomposed in similar or equal parallel processes, 
and it can be adapted for an arbitrary processor network topology [3]. 
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